Python complete tutorial
  • Python Complete Tutorial
  • About this book
  • What you need to prepare
  • 1️⃣Try python for the first time
    • Install python
    • Hello world!
    • Hello world in a nutshell
    • The first simple python project
    • most useful libraries
    • Recommended websites
  • 2️⃣Data structure and basic operations
    • Python data structure
    • Data structure without hash table
    • Data structure with hash table
    • Variability and address
    • basic python programming
    • basic python programming 2
    • basic python programming 3
    • some additions
    • Fibonacci sequence
    • Judging prime numbers
    • txt/csv file operation
  • 🐍Practice program
    • 🚩fancy print
    • 🚩Remove duplicate elements
    • 🚩Palindrome detection
  • 😎leetcode
    • what is leetcode
  • 3️⃣Data mining and machine learning
    • What is data mining
    • iris data set
    • Mean median mode
    • Harmonic mean
    • Histogram
    • Correlation algorithm
    • Gaussian distribution data set
    • projection
    • PCA
    • MDS
    • Bayesian and Frequentist
    • Data normalization
    • binary SVM
    • One Hot Encoding
    • Multi-class SVM
    • Accuracy and error rate
    • Confusion matrix & Accuracy, Precision, Recall
    • F1 score
    • ROC and AUC
  • 4️⃣big data and data visualization
    • line chart
    • Parallel coordinates
    • Histogram chart
  • 5️⃣Mathematical algorithm and digital signal processing
    • Mathematical constants and basic operations
    • Normal distribution
    • Permutation and combination
    • Bernoulli distribution
    • Chaotic system
  • 6️⃣Classes and design patterns
    • Classes and design patterns
  • 7️⃣Operate the database with python
    • MySQL
      • Install MySQL
      • First try MySQL
      • MySQL Architecture
      • database operations
      • database
  • 8️⃣Cryptography
    • beginning of Cryptography
  • 9️⃣deep learning
    • What is Deep Learning
    • basic
  • 💔algorithm
    • Algorithms and Data Structures
Powered by GitBook
On this page
  1. Data mining and machine learning

projection

projection in math

PreviousGaussian distribution data setNextPCA

Last updated 3 years ago

import numpy as np
import matplotlib.pyplot as plt

x = np.array( [1, -2] )
y = np.array( [2, 4] )

a = x * np.dot(x, y) / np.linalg.norm(x)**2
b = y - a

plt.plot( [0, x[0]],
          [0, x[1]], lw = 5 )
plt.plot( [0, y[0]],
          [0, y[1]], lw = 5 )

plt.plot( [0, a[0]],
          [0, a[1]] )
plt.plot( [0, b[0]],
          [0, b[1]] )

plt.axis('square')
plt.xlim(-3, 5)
plt.ylim(-3, 5)
plt.show()

As shown in the figure, this program draws the projection and parallel lines of the orange vector on the blue vector.

Projection is a very important content in machine learning and data mining.

Statistics

Start time of this page: December 29, 2021

Completion time of this page: December 31, 2021

3️⃣
Page cover image
orthogonal projection