The line chart is to use lines to represent data. It is generally used to see the trend of the data, whether it is a positive ratio (increasing) or an inverse ratio (decreasing)
For example, here is a piece of data about income and outlay
income = [1200,1400,1600,1800,2000,2200,2400]outlay = [1000,1240,1320,1500,1790,1924,2218.75]
Each income corresponds to an outlay
If we use the following procedure, we can draw a clear diagram of the relationship between income and expenditure:
income = [1200,1400,1600,1800,2000,2200,2400]outlay = [1000,1240,1320,1500,1790,1924,2218.75]import matplotlib.pyplot as pltplt.plot(income, outlay)plt.title('The relationship between income and outlay')plt.xlabel('income')plt.ylabel('outlay')plt.grid()plt.show()
In this graph, we will find that when income increases, expenditures will increase accordingly.
A typical use scheme of line chart is to draw function image.
For example, we can use the following code to draw an image of a quadratic function.
import matplotlib.pyplot as pltimport numpy as npx = np.arange(-10, 10, 0.1)y = x **2plt.plot(x, y)plt.title('Draw function graph')plt.xlabel('x')plt.ylabel('y')plt.grid()plt.show()
We can also draw images of two functions in the same picture.
For example, in the figure below, I have drawn the sine and cosine images at the same time.
import matplotlib.pyplot as pltimport numpy as npx = np.arange(-np.pi, np.pi, 0.1)y1 = np.sin(x)y2 = np.cos(x)plt.plot(x, y1, label ='sin')plt.plot(x, y2, label ='cos')plt.title('Draw function graph')plt.xlabel('x')plt.ylabel('y')plt.grid()plt.legend()plt.show()
The following code block can draw multiple functions with gradually color:
import numpy as npimport matplotlibimport matplotlib.pyplot as pltx = np.arange( 0, 5, 0.01 )N =30cmap = plt.get_cmap( 'jet', N )for i, n inenumerate( np.linspace(0, 0.5, N) ): y = x ** n plt.plot( x, y, c=cmap(i) )plt.xlabel('x')plt.ylabel('y')plt.title('Automatically add multiple functions')# Draw colorbarnorm = matplotlib.colors.Normalize( 0, 0.5 )sm = plt.cm.ScalarMappable( cmap=cmap, norm=norm )plt.colorbar(sm)plt.grid()plt.show()
This method is very useful when drawing a large number of function images, and can show the difference between different function images.